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Introduction

In this talk, we consider machine-learning-based approaches to
speed up Parareal (Lions et al., 2001), a parallel-in-time solver for
ODEs and PDEs. Why is time parallelization important?

▶ Space parallelization has been a widely use technique for
solving PDEs on multiple processors.

▶ In plasma physics and other fields, these traditional techniques
often reach saturation on modern supercomputers, thus
leaving time parallelization as the only avenue for
improvement (Samaddar et al., 2019).

▶ Simulations of molecular dynamics often involve averages over
very long trajectories of stochastic dynamics. Space
parallelization is thus useless to reduce the wall clock time
requirements (Gorynina et al., 2022)



Parareal (Lions et al. (2001))



Parareal (Lions et al., 2001)

Consider a system of d ∈ N ODEs

du

dt
= h(u(t), t) on t ∈ [t0, tN ] , with u (t0) = u0,

where

▶ h : Rd × [t0, tN ] → Rd is a smooth multivariate function,

▶ u : [t0, tN ] → Rd is the time-dependent vector solution,

▶ and u0 ∈ Rd are the initial values at t0.

We partition the time domain into N sub-intervals of equal length

dui
dt

= h (ui (t | Ui ) , t) , t ∈ [ti , ti+1] , ui (ti ) = Ui , for i = 0, ...,N−1,

and we enforce the continuity conditions at each ti , namely

U0 = u0,Ui = ui−1 (ti |Ui−1) , for i = 1, . . . ,N.



Parareal (Lions et al., 2001)
We solve this system of N + 1 equations

U0 = u0,Ui = ui−1 (ti |Ui−1) , for i = 1, . . . ,N.

using Newton-Rapson, which yields the following iterative strategy:

Uk+1
0 = u0, (1)

Uk+1
i = ui−1

(
ti |Uk

i−1

)
+

∂ui−1

∂Ui−1

(
ti |Uk

i−1

) [
Uk+1
i−1 − Uk

i−1

]
. (2)

Assume that we have available a fine and a coarse numerical
integrator, F and G respectively,

▶ F is accurate but computationally expensive, infeasible to run
sequentially over [t0, tN ]. Parallel computation over [ti , ti+1] is
possible.

▶ G is less accurate but cheap to execute.

They can be the same solver with different time steps, or different
numerical schemes.



Parareal (Lions et al., 2001)

Looking at the expression (2) from the previous slide,

Uk+1
i = ui−1

(
ti |Uk

i−1

)
+

∂ui−1

∂Ui−1

(
ti |Uk

i−1

) [
Uk+1
i−1 − Uk

i−1

]
, (2)

we can approximate the first term using the fine solver, F
(
Uk
i−1

)
,

and the derivative in the second term by finite differences using

G
(
Uk+1
i−1

)
− G

(
Uk
i−1

)
.

Since the update is sequential in time we cannot use F for

approximating the derivative as F
(
Uk+1
i−1

)
is not known.

By (2), the starting points are iteratively updated using the
predictor-corrector rule

Uk+1
i = G

(
Uk+1
i−1

)
+F

(
Uk
i−1

)
−G

(
Uk
i−1

)
, i = 1, . . . ,N. (3)



Parareal (Lions et al., 2001)

Some comments:

▶ The computation of the fine solver over [ti , ti+1] can be
parallelized once all the starting points U0

i have been serially
computed, normally using G .

▶ The stopping criterion of this algorithm is chosen as

||Uk
i − Uk−1

i ||∞ < ϵ, ∀i ≤ N, (4)

where || · ||∞ is the infinity norm, which guarantees that the
initial conditions have stabilized.

▶ Let K be the total number of Parareal iterations to
convergence. In the worst-case scenario, K = N and the
solution trivially converges to that of the fine solver.



Parareal - Sketch of behavior 1/8

Consider solving the following ODE with initial condition u0 = 0,
and N = 5



Parareal - Sketch of behavior 2/8



Parareal - Sketch of behavior 3/8



Parareal - Sketch of behavior 4/8



Parareal - Sketch of behavior 5/8



Parareal - Sketch of behavior 6/8



Parareal - Sketch of behavior 7/8



Parareal - Sketch of behavior 8/8



Parareal - Computational cost
Assume that running F over one interval [ti , ti+1] takes TF time,
and similarly for G . The cost of the serial procedure is

TSerial = NTF .

The cost of Parareal, assuming it converges in KPara iterations, is

TPara ≈ NTG +

KPara∑
k=1

(TF + (N − k)TG )

= KParaTF + (KPara + 1)(N − KPara/2)TG

While the parallel speed-up, compared to the (serial) fine solver:

SPara =
TSerial

TPara
≈

[
KPara

N
+ (KPara + 1)

(
1− KPara

2N

)
TG

TF

]−1

.

Parareal is faster when KPara < N and TG /TF << 1.

How can we improve on this? Keep G fixed and reduce KPara.



GParareal (Pentland et al. (2023))



GParareal (Pentland et al. (2023))

Pentland et al. (2023) change the update criterion of the initial
conditions, resulting in a new technique called GParareal.

Parareal uses information calculated during the previous iteration k ,

Uk+1
i = G

(
Uk+1
i−1

)
+F

(
Uk
i−1

)
−G

(
Uk
i−1

)
, i = 1, . . . ,N, (3)

GParareal uses information from the current iteration k + 1,

Uk+1
i = F

(
Uk+1
i−1

)
= (F − G + G )

(
Uk+1
i−1

)
= (F − G )

(
Uk+1
i−1

)
+ G

(
Uk+1
i−1

)
.

This would require a serial computation of F
(
Uk+1
i−1

)
. Instead, a

Gaussian process is used to infer the first term from data.



GParareal (Pentland et al. (2023))

System Parareal GParareal* GParareal
FitzHugh–Nagumo (FHN) 11 5 5
Rossler 18 13 13
Hopf 19 10 10
Brusselator 19 NA 20
Lorenz 15 NA 11
Double Pendulum 15 10 10

Comparison of performance for common ODE systems in the literature,
described in Slides 57-63.

GParareal* refers to the original approach (Pentland et al., 2023), while
GParareal refers to our implementation.

‘NA’ stands for not available as not considered by the reference. The
results have been produced using accuracy ϵ = 5e−7.



Review: Gaussian Processes
Consider a dataset D = {(x , y)i}ni=1 where

yi = f (xi ) + ϵ ∈ R, xi ∈ Rd ,

and ϵ an additive i.i.d. Gaussian noise of variance σ2
n. We want to

learn the function f . We use Gaussian processes for this.

Definition 1 (Gaussian Process (GP))

A Gaussian process is a collection of random variables any finite
number of which have a joint Gaussian distribution. It is uniquely
identified by the mean function and the covariance function.

Here we take:

▶ Mean function m(x) = 0.

▶ Covariance function Cov(f (x), f (x ′)) = k(x , x ′), where the
kernel k(·, ·) is the squared exponential

k(x , x ′) = exp(||x − x ′||22/σ2
s ). (5)



Review: Gaussian Processes

The observational noise σn and the kernel bandwidth σs control
the performance of the method upon prediction. They are learned
from the data by maximizing the marginal log-likelihood

log p(y|x) = −1

2
(yT (K (x, x) + σ2

nIn)
−1y+ log |K (x, x)|+ n log 2π),

where | · | is the determinant.

After having trained the model, we can use it to make a prediction
at a new point x∗, conditional on the observed data D. This can
be obtained through the posterior distribution y |x∗, which is
normal with mean

K (x∗, x)
[
K (x, x) + σ2

nI
]−1

y,

where In is the identity matrix of size n, and K (x, x) is the kernel
matrix of size n × n having K (x, x)i ,j = k(xi , xj). Note the need to
invert the kernel matrix K (·, ·), at a computational cost of O(n3).



GParareal - Computational cost
The runtime cost of GParareal is

TGPara∗ ≈ NTG +

KGPara∗∑
k=1

(TF + (N − k)TG + TGP∗(k))

= KGPara∗TF + (KGPara∗ + 1) (N − KGPara∗/2)TG + TGP∗,

where

TGP∗ :=

KGPara∗∑
k=1

TGP∗(k),

and TGP∗(k) is the wallclock time expended in using the model at
iteration k .

Given the cubic cost of matrix inversion for fitting a GP, and the
dataset size of the order O(kN) by iteration k , we have

TGP∗ =

KGPara∗∑
k=1

O(k3N3) = O(K 4
GPara∗N

3).



GParareal - Computational cost

The speed-up is

SGPara∗ ≈
[
KGPara∗

N
+ (KGPara∗ + 1)

(
1− KGPara∗

2N

)
TG

TF
+

TGP∗
NTF

]−1

.

When KPara = KGPara∗, to achieve the same speed-up SPara, we
require the total cost of the GP to be negligible compared to that
of the serial procedure.

Finally, note that the maximum speed-up achievable by any parallel
procedure that converges in K iterations, given by

SUB =
K

N
.



GParareal - Performance - Hopf bifurcations
To showcase the empirical performance of GParareal, consider a
non-linear model for the study of Hopf bifurcations (Seydel, 2009,
pg. 72; also Slide 59), defined by the following equations

du1
dt

= −u2+u1(
t

T
−u21−u22),

du2
dt

= u1+u2(
t

T
−u21−u22), (6)

where we note the dependence on time. In practice, we add time
as an additional coordinate yielding a d = 3 autonomous system.

Image taken from Pentland et al. (2023)



GParareal - Performance - Hopf bifurcations

47 94 141 282 517
Cores

0

5

10

15

20

25

Sp
ee

d-
up

Para Theoretical
Para Actual
GPara Upper bound
GPara Theoretical
GPara Actual
NN-GPara Theoretical approx
NN-GPara Upper bound
NN-GPara Theoretical
NN-GPara Actual
Fine solver



GParareal - Improvements

How can we improve? Maintain K ≤ KGPara∗ while reducing TGP∗.

The GP cost comes from the sample size O(Nk) by iteration k .
Can we reduce the sample size without affecting performance?

Yes, we can fit the model using a small subset consisting of the
nearest neighbors to the prediction point. This is sufficient to
smooth locally because very few points are empirically close in
Euclidean distance.



Nearest Neighbor GParareal
(NN-GParareal)



NN-GParareal - Key Points

▶ Whereas GParareal trains the GP once per iteration k using
the full dataset D, NN-GParareal is re-trained every time a
prediction is made and it uses a subset D ′ ⊂ D of the dataset
D, with cardinality |D ′| = m.

▶ Empirically, a fixed small value of m ∈ {15, ..., 20} is sufficient
for comparable performance to training on the whole D.

▶ Empirically, choosing the m observations to be the nearest
neighbors (NN) of the prediction point in Euclidean distance
has at least the same performance as other reasonable
approaches.

▶ This model is known as nearest neighbor Gaussian process
(NNGP) in the literature.

▶ Re-training at every prediction makes the GP globally
non-stationary, without the need to change the kernel.



NN-GParareal - Performance

System Parareal GParareal* GParareal NN-GParareal
FitzHugh–Nagumo 11 5 5 5
Rossler 18 13 13 12
Hopf 19 10 10 9
Brusselator 19 NA 20 17
Lorenz 15 NA 11 9
Double Pendulum 15 10 10 10

Comparison of performance for common ODE systems in the literature,
described in Slides 57-63.

GParareal* refers to the original approach (Pentland et al., 2023), while
GParareal refers to our implementation.

‘NA’ stands for not available as not considered by the reference. The
results have been produced using accuracy ϵ = 5e−7.



NN-GParareal - Computational Cost

Assuming NN-GParareal converges in KNN iterations, we have

TNN−GPara ≈ NTG +

KNN∑
k=1

(TF + (N − k)TG + TNNGP(k))

= KNNTF + (KNN + 1) (N − KNN/2)TG + TNNGP ,

where TNNGP :=
∑KNN

k=1 TNNGP(k), and TNNGP(k) is the cost of
using the model during iteration k ,

TNNGP(k) = (N − k)Tm
NNGP ,

Tm
NNGP is the cost of using the model to make a single prediction,

including training. It is virtually constant across k and can be
easily estimated beforehand. This follows from the constant matrix
size m ×m to be inverted.



NN-GParareal - Computational Cost

The speed-up for NN-GParareal is

SNN-GPara ≈
[
KNN

N
+ (KNN + 1)

(
1− KNN

2N

)
TG

TF
+

KNNT
m
NNGP

NTF
(N − (KNN + 1)/2)

]−1

.

The speed-up doesn’t immediately clarify whether this model is
cheaper than a normal GP. However, for a small, fixed m, the
computational complexity is loglinear in N

TNNGP =

KNN∑
k=1

(N − k)Tm
NNGP =

KNN∑
k=1

(N − k)[O(m3) + O(log(kn))]

= O(KNNNm
3) + O(KNNN log(KNNN)).

The log term comes from the nearest neighbor computation.



NN-GParareal - Performance - Hopf bifurcations
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NN-GParareal - Performance - FitzHugh-Nagumo PDE

We explore the performance of Parareal and its variants on a
high-dimensional system. We use the two-dimensional, non-linear
FitzHugh-Nagumo PDE model (Ambrosio and Françoise, 2009).
See also Slide 67.

It represents a set of cells constituted by a small nucleus of
pacemakers near the origin immersed among an assembly of
excitable cells. The simpler FHN ODE system only considers one
cell and its corresponding spike generation behavior.

We discretize both spatial dimensions using finite difference and d̃
equally spaced points, yielding an ODE with d = 2d̃2 dimensions.

We consider d̃ = 10, 12, 14, 16, corresponding to
d = 200, 288, 392, 512, and set N = 512.



NN-GParareal - Performance - FitzHugh-Nagumo PDE
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Figure: Plot of speed-ups for Parareal and its variants for the FitzHugh-Nagumo PDE
model. The speed-ups are computed according to the formulas above. For
N = 256, 512, GParareal failed to converge within the computational time budget.
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GParareal - Performance - Hopf bifurcation

We run Parareal and its variants using a variable number of
intervals N over t ∈ [−20, 500]. In the table:

▶ K is the number of iterations to convergence.

▶ F and G are the cost per iteration of the fine (accurate,
slow) and coarse (less accurate, fast) respectively.

▶ ’Model’ is the cost of training and inference for the learner
used.

▶ ’Total’ is the overall running time.

▶ ’Speed-up’ is the empirical speed-up, the ratio of the serial
solver (F ) to the parallel algorithm.

All entries are in seconds.



GParareal - Performance - Hopf bifurcation

NN-GParareal: our contribution. It trains the GP on a fixed, small
subset of the data to drastically reduce the cost. More details later.



GParareal - Performance - Hopf bifurcation



NN-GParareal - Intuition
Each plot is the prediction error incurred by the model across
intervals i and iterations k . The blue line is that of Parareal, while
the gray one is of 1-nearest neighbor, a learning model that
predicts using exclusively the value of the closest observation.

10 20 30 40
10

5

0
Rossler - k=1

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=2

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=3

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=4

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=5

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=6

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=7

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=8

Parareal
1-NN Parareal

15 20 25 30 35 40
10

5

0
Rossler - k=9

Parareal
1-NN Parareal

Interval i

Pr
ed

ict
io

n 
Er

ro
r



NN-GParareal - Intuition
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NN-GParareal - Choosing the data subset - Heuristics

System NN Col + rnd Col only Row + col Row-major Col-major

FHN 5 8 8 8 10 7
Rossler 12 14 17 17 21 16
Hopf 10 10 10 10 30 10
Brusselator 17 19 Exc Exc Exc 20
Lorenz 10 13 13 13 12 13
Double Pendulum 10 11 15 12 13 13

Table: Simulation results for heuristic choices of data subset for NN-GParareal. ‘Exc’
failed to converge.

▶ NN. The nearest neighbors. Taken as reference.

▶ Col + rnd. Take the complete history (a column) (xj,i )
k
j=1 up to m, and

distribute any remaining neighbors m − k randomly.

▶ Col only. Take the complete history. Note that this sets m = k.

▶ Row + col. Expand radially by striking a trade-off between previous
iterations (column entries) and nearby intervals (row entries).

▶ Row-major. Give priority to nearby intervals, thus expanding horizontally
across columns first.

▶ Column-major. Give priority to previous iterations, thus expanding
vertically across rows first.



NN-GParareal - Choosing the data subset - Learning

We enrich the observation xk,i by including information about the
current interval i and iteration k, obtaining zk,i = (xk,i , i , k). We
employ the following compositional kernel:

K (z1, z2) = K ((x1, i1, k1), (x2, i2, k2))

= 10σvK1 (z1, z2)K2 (z1, z2)K3 (z1, z2) ,

with

K1 (z1, z2) = exp{−0.5 · 10−σs ||x1 − x2||22},
K2 (z1, z2) = exp{−0.5 · 10−σi ||i1 − i2||22},
K3 (z1, z2) = exp{−0.5 · 10−σk ||k1 − k2||22},

where σv captures the standard deviation of the process, and
σs , σi , σk control the relative importance of the spatial,
temporal-across-intervals and temporal-across-iterations
dimensions.



NN-GParareal - Choosing the data subset - Learning

As proposed by Vecchia (1988), we can rank observations based on
the kernel score with respect to the prediction point z∗, k(·, z∗).
Then, choose the top m. Since the optimal σs depend on m, we
follow the iterative procedure:

1. Propose a random subset of size m, D ′

2. Compute the optimal σs given D ′

3. Rank the observations using k(·, ·) based on the optimal θs

4. Propose a new subset from the top m observations

5. Repeat steps 2-4 until the subsets stabilize

This procedure is computationally expensive due to its iterative
nature.



NN-GParareal - Choosing the data subset - Learning
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Figure: Visualization of the converged subset selection for the NN-GParareal with time
extension algorithm run on Lorenz. Histogram of the distribution of the percentage of
points in each converged subset that match the nearest neighbors, aggregating over.



Choosing m
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Figure: Histogram of K for several systems obtained using seven values of m, between
10 and 20, and five random seeds. Note how concentrated the empirical distributions
are, guaranteeing consistent performance regardless of the value of m and the specific
execution.



NN-GParareal - More results: Thomas Labyrinth

Finally, we consider Thomas Labyrinth (Gilpin, 2021), a chaotic
system reportedly difficult to learn by a variety of kernel methods
(Yang et al., 2023). For N = 256 and N = 512 GParareal failed to
converge within 48 hours, intermediate results have been placed
instead. This doesn’t affect the conclusions.



NN-GParareal - More results: Thomas Labyrinth
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Figure: Plot of speed-ups for Parareal and its variants for Thomas labyrinth. The
speed-ups are computed according to the formulas in Section ??. GParareal failed to
converge within the time limit for N = 256, 512, hence the missing data.
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Figure: GParareal’s percentage of converged intervals (red line) and the training time
per iteration (blue line) for Thoams labyrinth. The aggregated model cost across k is
shown in the title. Note that N = 256, 512 failed to converge within the
computational time budget. The model cost per iteration is increasing with k.
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Figure: NN-GParareal’s percentage of converged intervals (red line) and the training
time per iteration (blue line) for Thoams labyrinth. The aggregated model cost across
k is shown in the title. The model cost per iteration is decreasing with k.
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Figure: NN-GParareal, empirical distribution of K across values of m for Thomas
labyrinth. 200 independent runs for each m have been carried out. The shaded area
indicates better performance than GParareal.
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Figure: NN-GParareal, empirical distribution of the speed-up across values of m for
Thomas labyrinth. 200 independent runs for each m have been carried out. The
shaded area indicates better performance than GParareal.



ODE/PDE Systems



Systems: FitzHugh–Nagumo

The FitzHugh-Nagumo (FHN) is a model for an animal nerve axon
(Nagumo et al., 1962). It is a reasonably easy system to learn,
does not exhibit chaotic behavior, and is commonly used
throughout the literature. It is described by the following equations

du1
dt

= c

(
u1 −

u31
3

+ u2

)
,

du2
dt

= −1

c
(u1 − a+ bu2) ,

with (a, b, c) = 0.2, 0.2, 3. We integrate over t ∈ [0, 40] using
N = 40 intervals, taking u0 = (−1, 1) as the initial condition. We
use Runge-Kutta 2 with 160 steps for the coarse solver G , and
Ruge-Kutta 4 with 1.6e5 steps for the fine solver F . This is the
same setting as Pentland et al. (2023), which allows almost direct
comparison, although our system is the normalized version of the
above, which also applies to u0. We use a (normalized) error
ϵ = 5e−7.



Systems: Rossler

The Rossler is a model for turbulence (Rössler, 1976)

du1
dt

= −u2 − u3,
du2
dt

= u1 + âu2,
du3
dt

= b̂ + u3 (u1 − ĉ) .

When (â, b̂, ĉ) = (0.2, 0.2, 5.7), it exhibits chaotic behavior. This
configuration is commonly used throughout the literature. We
integrate over t ∈ [0, 340] using N = 40 intervals, taking
u0 = (0,−6.78, 0.02) as initial condition. We use Runge-Kutta 1
with 9e4 steps for the coarse solver G , and Ruge-Kutta 4 with
4.5e8 steps for the fine solver F . This is the same setting as
Pentland et al. (2023), although, like above, we use the normalized
version and set a normalized ϵ = 5e−7.



Systems: Non-linear Hopf bifurcation

This is a non-linear model for the study of Hopf bifurcations, see
Seydel (2009, pg. 72) for a detailed explanation. The model is
defined by the following equations

du1
dt

= −u2+u1(
t

T
−u21−u22),

du2
dt

= u1+u2(
t

T
−u21−u22), (7)

where we note the dependence on time. To counter that, we add
time as an additional coordinate, thus yielding a d = 3 system. We
integrate over t ∈ [−20, 500] using N = 32 intervals, taking
u0 = (0.1, 0.1, 500) as initial condition. We use Runge-Kutta 1
with 2048 steps for the coarse solver G , and Ruge-Kutta 8 with
5.12e5 steps for the fine solver F . This is the same setting as
Pentland et al. (2023), although, like above, we use the normalized
version and set a normalized ϵ = 5e−7.



Systems: Brusselator

The Brusselator models an autocatalytic chemical reaction
(Lefever and Nicolis, 1971). It is a stiff, non-linear ODE, and the
following equations govern it

du1
dt

= A+ u21u2 − (B + 1)u1,

du2
dt

= Bu1 − u21u2,

where (A,B) = (1, 3). We integrate over t ∈ [0, 100] using N = 32
intervals, taking u0 = (1, 3.7) as initial condition. We use
Runge-Kutta 4 with 2.5e2 steps for the coarse solver G , and
Ruge-Kutta 4 with 2.5e4 steps for the fine solver F . We use the
normalized version and set a normalized ϵ = 5e−7.



Systems: Double pendulum

This is a model for a double pendulum, adapted from Danby
(1997). It consists of a simple pendulum of mass m and rod length
ℓ connected to another simple pendulum of equal mass m and rod
length ℓ, acting under gravity g . The model is defined by the
following equations

du1
dt

= u3,

du2
dt

= u4,

du3
dt

=
−u23f1 (u1, u2)− u24 sin (u1 − u2)− 2 sin (u1) + cos (u1 − u2) sin (u2)

f2 (u1, u2)
,

du4
dt

=
2u23 sin (u1 − u2) + u24f1 (u1, u2) + 2 cos (u1 − u2) sin (u1)− 2 sin (u2)

f2 (u1, u2)
,

where
f1 (u1, u2) = sin (u1 − u2) cos (u1 − u2) ,

f2 (u1, u2) = 2− cos2 (u1 − u2) .



Systems: Double pendulum

In the above, m, ℓ, and g have been scaled out of the system by
letting ℓ = g . The variables u1 and u2 measure the angles between
each pendulum and the vertical axis, while u3 and u4 measure the
corresponding angular velocities.

The system exhibits chaotic behavior and is commonly used in the
literature. Based on the initial condition, it can be difficult to learn.

We integrate over t ∈ [0, 80] using N = 32 intervals, taking
u0 = (−0.5, 0, 0, 0) as initial condition. We use Runge-Kutta 1
with 3104 steps for the coarse solver G , and Ruge-Kutta 8 with
2.17e5 steps for the fine solver F . This is a similar setting as
Pentland et al. (2023, Figure 4.10), although, like above, we use
the normalized version and set a normalized ϵ = 5e−7.



Systems: Lorenz

The Lorenz system is a simplified model for weather prediction
Lorenz, 1963. With the following parameters, it is a chaotic system
governed by the equations

du1
dt

= γ1 (u2 − u1) ,

du2
dt

= γ2u1 − u1u3 − u2,

du3
dt

= u1u2 − γ3u3,

with (γ1, γ2, γ3) = (10, 28, 8/3). We integrate over t ∈ [0, 18]
using N = 50 intervals, taking u0 = (−15,−15, 20) as initial
condition. We use Runge-Kutta 4 with 3e2 steps for the coarse
solver G , and Ruge-Kutta 4 with 2.25e4 steps for the fine solver
F . We use the normalized version and set a normalized ϵ = 5e−7.



Systems: Thomas labyrinth
Thomas (1999) has proposed a particularly simple
three-dimensional system representative of a large class of
auto-catalytic models that occur frequently in chemical reactions
(Rasmussen et al., 1990), ecology (Deneubourg and Goss, 1989),
and evolution (Kauffman, 1993). It is described by the following
equations 

dx
dt = b sin y − ax ,
dy
dt = b sin z − ay ,
dz
dt = b sin x − az ,

(8)

where (a, b) = (0.5, 10). We integrate over t ∈ [0, 10] for
N = 32, 64, t ∈ [0, 40] for N = 128, and t ∈ [0, 100] for
N = 256, 512 intervals. Following Gilpin (2021), we take

u0 = (4.6722764, 5.2437205e−10,−6.4444208e−10)

as initial condition, for which the system exhibits chaotic dynamics.
Further, we use Runge-Kutta 1 with 10N steps for the coarse
solver G and Ruge-Kutta 4 with 1e9 steps for the fine solver F .



Systems: Viscous Burgers’ equation

The viscous Burgers’ equation is a fundamental PDE describing
convection-diffusion occurring in various areas of applied
mathematics. It is one-dimensional and defined as

vt = νvxx − vvx (x , t) ∈ (−L, L)× (t0, tN ], (9)

with initial condition v(x , t0) = v0(x), x ∈ [−L, L], and boundary
conditions

v(−L, t) = v(L, t), vx(−L, t) = vx(L, t), t ∈ [t0,TN ].

In the above, ν is the diffusion coefficient. We discretize the spatial
domain using finite difference (Fornberg, 1988) and d + 1 equally
spaced points xj+1 = xj +∆x , where ∆x = 2L/d and j = 0, ..., d .



Systems: Viscous Burgers’ equation

In the numerical experiments, we consider two values for the time
horizon, tN = 5 and tN = 5.9, with t0 = 0. We set N = d = 128
and take L = 1 and ν = 1/100. The discretization and finite
difference formulation imply that it is equivalent to solving a
d-dimensional system of ODEs.

We take v0(x) = 0.5(cos(92πx) + 1) as the initial condition. We
use Runge-Kutta 1 with 4N steps for the coarse solver G and
Ruge-Kutta 8 with 5.12e6 steps for the fine solver F .

We use the normalized version with a normalized ϵ = 5e−7.



Systems: FitzHugh-Nagumo PDE

The two-dimensional, non-linear FitzHugh-Nagumo PDE model
(Ambrosio and Françoise, 2009) is an extension of the ODE system
in Slide 57. It represents a set of cells constituted by a small
nucleus of pacemakers near the origin immersed among an
assembly of excitable cells. The simpler FHN ODE system only
considers one cell and its corresponding spike generation behavior.

It is defined as

vt = a∇2v + v − v3 − w − c, (x , t) ∈ (−L, L)2 × (t0, tN ]

wt = τ
(
b∇2w + v − w

)
,

(10)

with initial conditions

v(x , t0) = v0(x),w(x , t0) = w0(x), x ∈ [−L, L],



Systems: FitzHugh-Nagumo PDE

and boundary conditions

v((x ,−L), t) = v((x , L), t)

v((−L, y), t) = v((L, y), t)

vy ((x ,−L), t) = vy ((x , L), t)

vx((−L, y), t) = vx((L, y), t), t ∈ [t0, tN ].

The boundary conditions for w are equivalent and not repeated.
We discretize both spatial dimensions using finite difference and d̃
equally spaced points, yielding an ODE with d = 2d̃2 dimensions.



Systems: FitzHugh-Nagumo PDE

In the numerical experiments, we consider four values for
d̃ = 10, 12, 14, 16, corresponding to d = 200, 288, 392, 512. We set
N = 512, L = 1, t0 = 0, and take v0(x),w(0) randomly sampled
from [0, 1]d as the initial condition.

We use Ruge-Kutta 8 with 108 steps for the fine solver F . We use
the normalized version with a normalized ϵ = 5e−7.

The time span and coarse solvers depend on d̃ , Table 2 describes
their relation. This is to provide a realistic experiment where the
user would need to adjust the coarse solver based on tN − t0.



Systems: FitzHugh-Nagumo PDE

d G G steps tN
200 RK2 3N tN = 150
288 RK2 12N tN = 550
392 RK2 25N tN = 950
512 RK4 25N tN = 1100

Table: Simulation setup for the two-dimensional FitzHugh-Nagumo PDE. Adjusting
the coarse solver based on the time horizon tN makes the simulation more realistic.
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