
NN-GParareal: Improving Scalability of GParareal
Using Nearest Neighbors

Guglielmo Gattiglio
University of Warwick

January 16, 2024

Under the supervision of:
Lyudmila Grigoryeva, University of St. Gallen

Massimiliano Tamborrino, University of Warwick

▶ Parareal

▶ Sketch of the Parareal algorithm

▶ Intermezzo: Gaussian process refresher

▶ GParareal

▶ NN-GParareal New!

▶ Empirical results

Introduction

In this talk, we consider machine-learning-based approaches to
speed up Parareal (Lions et al., 2001), a parallel-in-time solver for
ODEs and PDEs. Why is time parallelization important?

▶ Space parallelization has been a widely use technique for
solving PDEs on multiple processors.

▶ In plasma physics and other fields, these traditional techniques
often reach saturation on modern supercomputers, thus
leaving time parallelization as the only avenue for
improvement (Samaddar et al., 2019).

▶ Simulations of molecular dynamics often involve averages over
very long trajectories of stochastic dynamics. Space
parallelization is thus useless to reduce the wall clock time
requirements (Gorynina et al., 2022)

Introduction
An example of the systems we wish to solve: Thomas Labyrinth, a
chaotic ODE that will be considered later in the presentation.

Image taken from Gilpin (2021)

Parareal (Lions et al. (2001))

Parareal (Lions et al., 2001)

Consider a system of d ∈ N ODEs

du

dt
= h(u(t), t) on t ∈ [t0, tN] , with u (t0) = u0,

where

▶ h : Rd × [t0, tN] → Rd is a smooth multivariate function,

▶ u : [t0, tN] → Rd is the time-dependent vector solution,

▶ and u0 ∈ Rd are the initial values at t0.

We partition the time domain into N sub-intervals of equal length

dui
dt

= h (ui (t | Ui) , t) , t ∈ [ti , ti+1] , ui (ti) = Ui , for i = 0, ...,N−1,

and we enforce the continuity conditions at each ti , namely

U0 = u0,Ui = ui−1 (ti |Ui−1) , for i = 1, . . . ,N.

Parareal (Lions et al., 2001)
We solve this system of N + 1 equations

U0 = u0,Ui = ui−1 (ti |Ui−1) , for i = 1, . . . ,N.

using Newton-Rapson, which yields the following iterative strategy:

Uk+1
0 = u0, (1)

Uk+1
i = ui−1

(
ti |Uk

i−1

)
+

∂ui−1

∂Ui−1

(
ti |Uk

i−1

) [
Uk+1
i−1 − Uk

i−1

]
. (2)

Assume that we have available a fine and a coarse numerical
integrator, F and G respectively,

▶ F is accurate but computationally expensive, infeasible to run
sequentially over [t0, tN]. Parallel computation over [ti , ti+1] is
possible.

▶ G is less accurate but cheap to execute.

They can be the same solver with different time steps, or different
numerical schemes.

Parareal (Lions et al., 2001)

Looking at the expression (2) from the previous slide,

Uk+1
i = ui−1

(
ti |Uk

i−1

)
+

∂ui−1

∂Ui−1

(
ti |Uk

i−1

) [
Uk+1
i−1 − Uk

i−1

]
, (2)

we can approximate the first term using the fine solver, F
(
Uk
i−1

)
,

and the derivative in the second term by finite differences using

G
(
Uk+1
i−1

)
− G

(
Uk
i−1

)
.

Since the update is sequential in time we cannot use F for

approximating the derivative as F
(
Uk+1
i−1

)
is not known.

By (2), the starting points are iteratively updated using the
predictor-corrector rule

Uk+1
i = G

(
Uk+1
i−1

)
+F

(
Uk
i−1

)
−G

(
Uk
i−1

)
, i = 1, . . . ,N. (3)

Parareal (Lions et al., 2001)

Some comments:

▶ The computation of the fine solver over [ti , ti+1] can be
parallelized once all the starting points U0

i have been serially
computed, normally using G .

▶ The stopping criterion of this algorithm is chosen as

||Uk
i − Uk−1

i ||∞ < ϵ, ∀i ≤ N, (4)

where || · ||∞ is the infinity norm, which guarantees that the
initial conditions have stabilized.

▶ Let K be the total number of Parareal iterations to
convergence. In the worst-case scenario, K = N and the
solution trivially converges to that of the fine solver.

Parareal - Sketch of behavior 1/13

Consider solving the following ODE with initial condition u0 = 0,
and N = 5

Parareal - Sketch of behavior 2/13

Parareal - Sketch of behavior 3/13

Parareal - Sketch of behavior 4/13

Parareal - Sketch of behavior 5/13

Parareal - Sketch of behavior 6/13

Parareal - Sketch of behavior 7/13

Parareal - Sketch of behavior 8/13

Parareal - Sketch of behavior 9/13

Parareal - Sketch of behavior 10/13

Parareal - Sketch of behavior 11/13

Parareal - Sketch of behavior 12/13

Parareal - Sketch of behavior 13/13

GParareal (Pentland et al. (2023))

Gaussian Processes
Consider a dataset D = {(x , y)i}ni=1 where

yi = f (xi) + ϵ ∈ R, xi ∈ Rd ,

and ϵ an additive i.i.d. Gaussian noise of variance σ2
n. We want to

learn the function f . We use Gaussian processes for this.

Definition (Gaussian Process (GP))

A Gaussian process is a collection of random variables any finite
number of which have a joint Gaussian distribution. It is uniquely
identified by the mean function and the covariance function.

Here we take:

▶ Mean function m(x) = 0.

▶ Covariance function Cov(f (x), f (x ′)) = k(x , x ′), where the
kernel k(·, ·) is the squared exponential

k(x , x ′) = exp(||x − x ′||22/σ2
s).

Gaussian Processes
The observational noise σn and the kernel bandwidth σs control
the performance of the method upon prediction. They are learned
from the data by maximizing the marginal log-likelihood

log p(y|x) = −1

2
(yT (K (x, x) + σ2

nIn)
−1y+ log |K (x, x)|+ n log 2π),

where | · | is the determinant.

After having trained the model, we can use it to make a prediction
at a new point x∗, conditional on the observed data D. This can
be obtained through the posterior distribution y |x∗, which is
normal with mean

K (x∗, x)
[
K (x, x) + σ2

nI
]−1

y,

where In is the identity matrix of size n, and K (x, x) is the kernel
matrix of size n × n having K (x, x)i ,j = k(xi , xj). Note the need to
invert the kernel matrix K (·, ·), at a computational cost of O(n3).

We can use GPs to improve the Parareal update (3).

GParareal (Pentland et al. (2023))
The idea introduced in Pentland et al. (2023) is to change the
update criterion of the initial conditions, resulting in a new
technique called GParareal.
The original algorithm computes the correction based on
information calculated during the previous iteration k ,

Uk+1
i = G

(
Uk+1
i−1

)
+F

(
Uk
i−1

)
−G

(
Uk
i−1

)
, i = 1, . . . ,N, (3)

Conversely, Gparareal uses information from the current iteration
k + 1,

Uk+1
i = F

(
Uk+1
i−1

)
= (F − G + G)

(
Uk+1
i−1

)
= (F − G)

(
Uk+1
i−1

)
+ G

(
Uk+1
i−1

)
.

However, this would require a serial computation of F
(
Uk+1
i−1

)
.

Instead, a Gaussian process is used to infer the first term from
data.

GParareal - Advantages and Disadvantages
To showcase the empirical performance of GParareal, consider a
non-linear model for the study of Hopf bifurcations (Seydel, 2009,
pg. 72), defined by the following equations

du1
dt

= −u2+u1(
t

T
−u21−u22),

du2
dt

= u1+u2(
t

T
−u21−u22), (5)

where we note the dependence on time. In practice, we add time
as an additional coordinate yielding a d = 3 autonomous system.

Image taken from Pentland et al. (2023)

GParareal - Advantages and Disadvantages

We run Parareal and its variants using a variable number of
intervals N over t ∈ [−20, 500]. In the table:

▶ K is the number of iterations to convergence.

▶ F and G are the cost per iteration of the fine (accurate,
slow) and coarse (less accurate, fast) respectively.

▶ ’Model’ is the cost of training and inference for the learner
used.

▶ ’Total’ is the overall running time.

▶ ’Speed-up’ is the empirical speed-up, the ratio of the serial
solver (F) to the parallel algorithm.

All entries are in seconds.

GParareal - Advantages and Disadvantages

NN-GParareal: our contribution. It trains the GP on a fixed, small
subset of the data to drastically reduce the cost. More details later.

GParareal - Advantages and Disadvantages

NN-GParareal

NN-GParareal - Key Points
▶ Whereas GParareal trains the GP once per iteration k using

the full dataset D, NN-GParareal is re-trained every time a
prediction is made and it uses a subset D ′ ⊂ D of the dataset
D, with cardinality |D ′| = m.

▶ Empirically, a fixed small value of m ∈ {15, ..., 20} is sufficient
for comparable performance to training on the whole D.

▶ Empirically, choosing the m observations to be the nearest
neighbors (NN) of the prediction point in Euclidean distance
has at least the same performance as other reasonable
approaches. We chose this among the others for its simplicity
and intuition (next slide).

▶ This model is known as nearest neighbor Gaussian process
(NNGP) in the literature.

▶ The computational cost incurred by the GP at iteration k is
O(k3N3), while that of NNGP is O(Nm3 + N log(kN)).

▶ Re-training at every prediction makes the GP globally
non-stationary, without the need to change the kernel.

NN-GParareal - Intuition
Each plot is the prediction error incurred by the model across
intervals i and iterations k . The blue line is that of Parareal, while
the gray one is of 1-nearest neighbor, a learning model that
predicts using exclusively the value of the closest observation.

10 20 30 40
10

5

0
Rossler - k=1

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=2

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=3

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=4

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=5

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=6

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=7

Parareal
1-NN Parareal

10 20 30 40
10

5

0
Rossler - k=8

Parareal
1-NN Parareal

15 20 25 30 35 40
10

5

0
Rossler - k=9

Parareal
1-NN Parareal

Interval i

Pr
ed

ict
io

n
Er

ro
r

NN-GParareal - Intuition
0 10 20 30 40i ′

0

1

Lorenz, k = 1, i ′ = 2

0 10 20 30 40i ′

0

1

Lorenz, k = 1, i ′ = 6

0 10 20 30 40i ′

0

1

Lorenz, k = 1, i ′ = 11

0 10 20 30 40i ′
0

1

2

3

4

5

Lorenz, k = 5, i ′ = 15

0 10 20 30 40i ′
0

1

2

3

4

5

Lorenz, k = 5, i ′ = 28

0 10 20 30 40i ′
0

1

2

3

4

5

Lorenz, k = 5, i ′ = 37

8 6 4 2 0

NN-GParareal - More results: Thomas Labyrinth
Finally, we consider Thomas Labyrinth (Gilpin, 2021), a chaotic
system reportedly difficult to learn by a variety of kernel methods
(Yang et al., 2023). For N = 256 and N = 512 GParareal failed to
converge within 48 hours, intermediate results have been placed
instead. This doesn’t affect the conclusions.

NN-GParareal - More results: Thomas Labyrinth

References I

Gilpin, William (2021). “Chaos as an interpretable benchmark
for forecasting and data-driven modelling”. In: arXiv preprint
arXiv:2110.05266.
Gorynina, Olga et al. (2022). “Combining machine-learned and
empirical force fields with the parareal algorithm: application to
the diffusion of atomistic defects”. In: arXiv preprint
arXiv:2212.10508.
Lions, Jacques-Louis, Yvon Maday, and Gabriel Turinici
(2001). “Résolution d’EDP par un schéma en temps pararéel”.
In: Comptes Rendus de l’Académie des Sciences-Series
I-Mathematics 332.7, pp. 661–668.
Pentland, Kamran et al. (2023). “GParareal: a time-parallel
ODE solver using Gaussian process emulation”. In: Statistics
and Computing 33.1, p. 23.

References II

Samaddar, Debasmita et al. (2019). “Application of the
parareal algorithm to simulations of ELMs in ITER plasma”. In:
Computer Physics Communications 235, pp. 246–257.
Seydel, Rüdiger (2009). Practical bifurcation and stability
analysis. Vol. 5. Springer Science & Business Media.
Yang, Lu et al. (2023). “Learning Dynamical Systems from
Data: A Simple Cross-Validation Perspective, Part V: Sparse
Kernel Flows for 132 Chaotic Dynamical Systems”. In: arXiv
preprint arXiv:2301.10321.

NN-GParareal - More results: Thomas Labyrinth

	References

