
GeneratingStochasticProcessesusing
EchoStateNetworksand

MaximumMeanDiscrepancy
Guglielmo Gattiglio, Lyudmila Grigoryeva

Department of Statistics, University of Warwick, Coventry, UK

Motivation and Introduction
Generative models find application in different contexts:
• Approximate Bayesian Computation
• Scarce data setting
• Scenario generation
• Probabilistic forecasting
• Proprietary data and privacy concerns

Arguably the most famous example of generative model for the static case
in the literature is generative adversarial networks. They suffer from mode
collapse, vanishing gradient and unstable training process; these are mostly
caused by the Jensen-Shannon divergence [1]. Several alternatives have been
proposed which rely on different losses such as the Wasserstein distance [2],
and the maximum mean discrepancy (MMD) [3].
Extensions of these models for time series data often involve taking chunks
of the time series as basic computational units, and including models capa-
ble of capturing the temporal dependence [4].

Wasserstein Distance vs Maximum Mean Discrepancy
Wasserstein estimator:
• Consistent
• Can be extended to arbitrary domains
• Requires solving a linear program, average cost O(n3) for sample of

size n

• Rate of convergence O(n−1/(d+1)) for dimensions d ≥ 2.
MMD estimator:
• Consistent
• Can be extended to arbitrary domains
• Closed form solution with cost O(n2)
• Rate of convergence independent of the dimensions, O(n−1/2)
• For some kernels k (e.g. Matérn), the MMD is weaker than Wasserstein

MMD(P,Q) ≤ W1(P,Q)

• Theoretical results for the robustness of the MMD
• Behavior of the MMD depends strongly on the kernel and its bandwidth

Echo State Networks
Echo state networks (ESNs, [5]) is the generative model underlying our
approach. They sit within the framework of reservoir computing and show
strong empirical performance in learning chaotic dynamical systems; they
can be though as recurrent neural networks (RNNs) with random weights,
as the weight matrices A, C, ς are not optimized during training, avoiding
vanishing gradient and bifurcation issues compared to standard RNNs and
yielding faster training.

Let z ∈
(
Rd

)Z and y ∈ (Rm)Z be infinite discrete-time input and output
signals respectively, and U :

(
Rd

)Z → (Rm)Z the unknown filter, U(z) = y.
ESNs are represented by the following state-space system{

xt = σ (Axt−1 + Czt + ζ)
yt = Wxt

Where xt ∈ RN , t ∈ Z are the states, C ∈ MN,d, ζ ∈ RN , A ∈ MN,N , and
W ∈ Mm,N for some N ∈ N. The filter U is the object of interest and is
learned by estimating the weight matrix W using linear regression.

Figure 1: A visual representation of a recurrent neural network

Training Procedure
1. Transform the time series y1:T into chunks Y = (Y1, ..., YK).
2. Generate an ESN and a noise sequence z−b:T

iid∼ N(0, 1)
3. Drive the ESN using z−b:T , observe the states x−b:T , discard x−b:0 and

arrange the rest into chunks X = (X1, ..., XK)
4. Initialize the weight matrix W with Wi,j

iid∼ Unif(0, 1)
5. Compute the generated chunks Y ′ by Y ′

k = WXk

6. Compute the gradient wrt MMD with L2 regularization

∇W (MMD2
k(Y, Y ′) + λ

1
m(N + 1) ||W ||22

7. Update the weight matrix using adaptive learning rates
8. Iterate 5-7 till convergence

Experimental Results
We tested the approach on simulated data coming from an ARMA(1,1)
model with (ϕ, θ) = (0.9, 0.5) and N(0, 1) innovations ϵt.

Figure 2: ACF and PACF using our training procedure.

Figure 3: Sample trajectories using our training procedure. Left synthetic,
right real.

Figure 4: (P)ACF obtained using linear regression on the states xt.

References
(1) M. Arjovsky and L. Bottou, arXiv preprint arXiv:1701.04862, 2017.

(2) M. Arjovsky, S. Chintala et al., International conference on machine learning, 2017, pp. 214–223.

(3) Y. Li, K. Swersky et al., International conference on machine learning, 2015, pp. 1718–1727.

(4) H. Ni, L. Szpruch et al., arXiv preprint arXiv:2111.01207, 2021.

(5) H. Jaeger, Bonn, Ger. Ger. National Res. Cent. Inf. Technol. GMD Tech. Rep., 2001, 148, 13.

